
Exhaustive Search, Backtracking, and
Dynamic Programming

Miles and Mohan

August 17, 2015

Exhaustive search In the exhaustive search, we iterate through all possible
solutions in the solution space. Conceptually, we are iterating through
the leaves of a tree representing the solution space..

Backtracking In backtracking, we more closely model our search for a so-
lution as navigating through the conceptual solution space tree.

However, rather than visiting every leaf (which represents a possible
solution), we remove branches that corespond to a set of solutions, none
of which can be the optimal solution. Sometimes, the branch removal
is because the entire branch is infeasible. In others, it’s because the
solution is no better than a solution we’ve already found. By always
keeping the best-solution-so-far, we can rule out branches which can’t
beat that current best.

Dynamic Programming In Dynamic Programming, like in divide-and-
conquer, we create a recursive solution for our problem by creating
multiple subproblems. However, unlike in divide-and-conquer, these
subproblems may overlap.

The problem with these multiple overlapping subproblems, is that, as
they generate their own subproblems, we may have duplicate subprob-
lems being calculated. The solution, which is simple, is to save the re-
sults of solving each subproblem in a table. If that subproblem comes
up again, the table is consulted, and the already-computed result is
returned.

There are two ways to fill in the table:

1

Top-Down In this case, we augment the recursive calculation with,
first, a check for whether or not the soluation has already been
computed in the table. If so, that saved value is returned. If not,
the solutions is computed, and then stored in the table.

Bottom-Up In this case, we fill in the table iteratively, starting at
the simplest cases and working our way up.

One phrase that can be helpful is use it or lose it. The idea is that you
consider an item, and figure out: what would happen if you chose to
use this item, and what would happen if you chose not to use the item.
Then, pick the better of the two. Sometimes, dynamic programming
problems have more than one choice (use or not use), but the concept
is still the same, consider your various choices by recursively computing
the result of each choice.

1 Problems

1. Describe an algorithm for solving Sudoku mini problems. Here’s an
example Sudoku mini problem:

3 2 1
5 1 6 3

1 5 3 2
5 3 2 4

4 2 6 1
1 5 4

Sudoku mini rules: complete the grid so that each row, column, and
3 × 2 box contains every digit from 1 to 6 inclusive.

Solution

Here’s an exhaustive search approach using a recursive solution:

def solveSudoko(board);

if board is filled in and each row, column, and 3 x 2 box

contains every digit from 1 to 6 inclusive:

return True

find the row and column of the first empty square and save as r, c

2

for value in range(1,7):

board[r][c] = value

if solveSudoku(board):

return True // We solved the problem!

return False

This problem works well using a backtracking approach. We’ll modify
the recursive solution to prune out some of the work.

def solveSudoko(board);

if board is filled in and each row, column, and 3 x 2 box

contains every digit from 1 to 6 inclusive:

return True

if some row, column, or 3 x 2 box has a duplicate of a digit from 1 to 6

return False // We’re pruning the branch

find the row and column of the first empty square and save as r, c

for value in range(1,7):

board[r][c] = value

if solveSudoku(board):

return True // We solved the probem!

return False

3

2. Imagine an n× n grid (in each direction, n intersections connected by n− 1
streets). Determine how many ways there are to travel from the top-left
intersection to the bottom-right intersection, assuming that travel is always
down one street, or to the right one street.
Here’s an example 11×11 grid.

(1 1)

(n, n)

This problem is easily solved using dynamic programming. Here’s a
recursive solution (that doesn’t yet use dynamic programming):

Determines the number of paths from vertex (toCol, toRow)

to vertex (numCols, numRows)

def numberPaths(toCol, toRow):

if toRow == numRows or numRows == numCols:

return 1

return numberPaths(fromCol, fromRow + 1) #move down

+ numberPaths(fromRow, fromCol + 1) # move right

In order to turn this into a dynamic programming solution (to avoid
massive recomputation), we add a two-dimensional table (initialized to
-1) that is of size n× n.

Determines the number of paths from vertex (toCol, toRow)

to vertex (numCols, numRows)

def numberPaths(toCol, toRow):

if table[toCol][toRow] == -1:

if toRow == numRows or numRows == numCols:

4

table[toCol][toRow] = 1

else:

table[toCol][toRow] = numberPaths(fromCol, fromRow + 1) #move down

+ numberPaths(fromRow, fromCol + 1) # move right

return table[toCol][toRow]

If we wanted to fill in the table bottom-up, we’d start by filling in ones
for the bottom row and right column. Then, we’d start at the bottom
right and make cells be the sum of the cell below and the cell to the
right.

The bottom-right of the table would look like:

5

2 Homework

1. Imagine an n× n grid (in each direction, n intersections connected by n− 1
streets), but where there’s a charge to drive on each street (different streets
may have different charges). Determine the minimal cost to travel from the
top-left intersection to the bottom-right intersection, assuming that travel is
always down one street, or to the right one street.

(a) What is the minimal cost to travel on this grid?

(b) How would you describe how perform an algorithm on an n × n grid
with an arbitrary charge on each street?

8
5

3

1

6 3

3

3

3 3

3

2

5

3

3

4

3 1

4

3

3

93 1 0

2

1

4

11

3

3

27

3

3

3

1

3

3

6

2. Given a 4 × 4 chessboard, figure out how to arrange four queens such
that none of them can attack any other (no two in a vertical, horizontal,
or diagonal line). Describe an algorithm to solve this problem for an
8 × 8 chessboard. Can you actually find a solution for an 8 × 8 board?

3 Advanced Problems

1. Consider the problem of determining how close two strings are to one
another. This is useful, for example, in suggesting spelling corrections.
Consider that a string can be edited by:

• adding a character,

• removing a character, or

• changing one character to another.

For example, you can change “some” to “sammy” by changing the ‘o’ to
an ‘a’, by adding a second ‘m’ after the first one, and then by changing
the ‘e’ to a ‘y’. Thus, the minimal edit distance is 3. (Longer edit
distances also exist: you could delete the ‘o’ and the’e’, and then add
‘a’, ‘m’, and ‘y’ for a total edit distance of 5.)

Create an algorithm to determine the minimal edit distance between
any two strings.

7

2. Imagine an n× n grid (in each direction, n intersections connected by n− 1
streets), but where there’s a square of n

3
× n

3
vertices in the middle that are

inaccessible. Determine the number of paths from the top-left intersection
to the bottom-right intersection, assuming that travel is always down one
street, or to the right one street.

(1 1)

(n, n)

under construction.
No travel allowed to these

vertices

8

