
Greedy Method

Context In general, when you try to solve a problem, you are trying to find a solution from among a large
space of possibilities. You usually do this by making a series of decisions, what move to make at each
step (for example: send 2 cannibals across first, or 1 cannibal and 1 missionary, etc.).

If you have no information or no way to tell which choice is best, then you may have to do an exhaustive
search over all the possibilities using backtracking. Basically this means you pick some choice and go
down that path until you either reach a solution or hit a dead end, in which case you go back (undo)
and try something else. While this will work in principle, in practice it’s often unusable for realistic
problems because there are just too many possibilities to explore. Even relatively simple-seeming
problems may have billions upon billions of possible solutions, and it would take infeasibly long time
to check them all.

Greedy Algorithm In some cases, the problem has some underlying structure that lets you be more
intelligent, and you can figure out the right choice at each step, without ever needing to undo or
backtrack a decision. In the happiest cases, when you’re especially lucky, there is sufficient structure
that you can quickly reach a solution by just picking the straightforward “best” choice at each step.
This is called greedy method.

The bad news is that greedy method doesn’t always work! When it does work it’s great, but for many
problems, when you pick what looks like the best choice for part of the solution, you can later find
that it actually leads you down the wrong path and forces bad choices for other parts of the solution.
So before you apply greedy method, it’s important to prove that it actually will find the best solution
for the problem you’re trying to solve.

Another point to mention here is that even for a single problem, there may be more than one potential
greedy strategy, more than one way to determine what looks like the “best” choice at each step. And
it could be that greedy method works using one strategy but not using another strategy. So you need
to prove that it works for the particular strategy you’re using.

Other Approaches In cases where greedy method doesn’t work, you still may be able to use other ap-
proaches that are much better than doing an exhaustive search, as long as there is some structure
to the problem. One such approach is dynamic programming, which will be covered in the coming
weeks. Incidentally, in a way you can think of greedy method as a simple special case of Dynamic
Programming.

1 Homework

For each of the following problems, write down a greedy strategy for solving the problem. Think about the
correctness of your strategy. If you believe that your strategy is not optimal, construct a counterexample,
revise your strategy, and repeat.

On the other hand, if you are convinced of the correctness of your strategy, write a convincing argument
for its correctness.
Problem 1: Coin Change

Suppose you are working at a bank, and a client asks you for 89/c in quarters, dimes, nickels, and pennies.
The clients wallet is small, so you should exchange as few coins as possible. What is the fewest number of
coins you can exchange? If another client comes in asking for n cents in coins, how would you pick which
coins to exchange with the client?

1

Problem 2: Minimum Cost Sum
You are given a sequence a1, a2, . . . , an of nonnegative integers, where n ≥ 1. You are allowed to take any

two numbers and add them to produce their sum. However, each such addition has a cost which is equal
to the sum. The goal is to the find the sum of all the numbers in the sequence with minimum total cost.
Describe an algorithm for finding the sum of the numbers in the sequence with minimum total cost. Argue
the correctness of your algorithm.

2 Solved Problems

Problem 3: Averaging Down

There are 10 identical vessels, one of them with 100 pints of water and the others empty. You are allowed
to perform the following operation: take two of the vessels and split the total amount of water in them
equally between them. The object is to achieve a minimum amount of water in the original vessel (the one
containing all the water in the initial setup) by a sequence of such operations. What is the best way to do
this? You can do as many operations as you want — the goal is just to minimize the amount of water in the
original vessel.

Solution: Averaging Down

A greedy algorithm to solve this problem is simple, and is described below. A greedy algorithm can only
be applied if there is a proof that it works, though, and the proof in this case is more complicated than the
algorithm itself, which is not uncommon. One valid proof follows the algorithm below.

Algorithm The algorithm is as follows: on each step, split the original vessel with one of the empty vessels,
which has the effect of halving the amount of water in the original vessel. When there are no empty
vessels left, you are done. At this point the original vessel, which originally had 100 pints of water,
has been halved 9 times, and now contains 100 ∗ (1/2)9 ≈ 0.195 pints of water. This is the minimum
possible.

This is greedy because on each step you are choosing the action that makes the maximum possible
progress towards the goal (reducing the water in the orginal vessel the most) on that step.

Proof For the proof, we’ll keep track of the minimum amount of water in any vessel that has water. Call
this quantity m. For example, initially m = 100, since there is only one vessel with water and it has
100 pints. If you split the original vessel with an empty one, then they each have 50 pints, so then
m = 50. And if you then split one of those with another empty vessel, then m = 25, etc.

Note that no matter what sequence of actions is taken, even if we aren’t using the greedy algorithm
above, the only way m can ever decrease is if some vessel (not necessarily the one with m pints in it) is
split with an empty vessel. This is because if you split two non-empty vessels, they each have at least
m pints beforehand (since m is the amount in the smallest non-empty vessel), and so they’ll each have
at least m pints after the split as well.

Now, consider any sequence of steps (not necessarily following the greedy strategy above), and let i be
the number of steps in that sequence which split some non-empty vessel with an empty vessel. The
sequence may also include steps that split two non-empty vessels, but those aren’t included in i. We
will prove the following claim:

Claim At the end of such a sequence of steps, it must be the case that m ≥ 100/2i, in other words, m
divided by 2, i times.

2

Proof of Claim The proof is by induction on i1. Consider the case where i = 1, which means we’ve
split exactly one non-empty vessel with an empty one. This is obviously just the first move, where
the original vessel with 100 pints is split with an empty vessel, after which m = 50, which is indeed
100/2i = 100/21 = 50, as claimed. And clearly there’s no way to reduce m futher without involving
one of the empty vessels, so the claim is true for any sequence with i = 1. Then, assume we know the
claim is true for i− 1. That means that after splitting with i− 1 vessels, no matter what sequence of
actions we did, we know m ≥ 100/2i−1. When we split some non-empty vessel with the i-th empty
vessel, the most we can reduce m by is to divide it by 2, which happens if we split the vessel containing
m with the empty vessel. After that split we’ll have m ≥ (100/2i−1)/2, which is 100/2i. So we’ll have
m ≥ 100/2i, which is what we claimed. Note that we could at this point start splitting non-empty
vessels with each other, but this can never reduce m, as noted above. So our claim will always remain
valid.

Having proven the claim, we’re almost done with the overall proof of the greedy algorithm. The claim
shows us that after we’ve split with 9 empty vessels, we must have m ≥ 100/29. And it’s not possible
to ever have a sequence of actions that involves splitting with more than 9 empty vessels, since once
an empty vessel is “used”, it can never become empty again (no matter what you split it with it will
always retain some water). Therefore the smallest possible value of m, the least amount of water that
can ever be in any non-empty vessel, is 100/29, and this is indeed what the greedy algorithm achieves.

Problem 4: Covering a spectrum
You want to create a scientific laboratory capable of monitoring any frequency in the electromagnetic

spectrum between L and H. You have a list of possible monitoring technologies, Ti, i = 1, ..n, each with an
interval [li, hi] of frequencies that it can be used to monitor. You want to pick as few as possible technologies
that together cover the interval [L,H]. Give an efficient algorithm for finding such a set of technologies.

Solution: Covering a spectrum

Algorithm. Notation: l-value refers to any li and h-value to any hi for 1 ≤ i ≤ n.

1. Sort the technologies so that the l-values are in nondecreasing order. Break any ties so that the h-values
are nondecreasing.

2. We will process the technologies in the sorted order and select the next technology to maximize the
coverage, that is, the selected technologies cover the interval [L,m] where m is as large as possible.
Initially, we set m = L and repeat the following steps while m < H.

(a) A technology i is valid for the position m if li ≤ m ≤ hi. Amongst all the technologies valid for
m, select the technology with the largest h-value and let k be the index of the selected technology.

(b) Update m to be hk.

3. Output the selected technologies.

1You have probably seen proof by induction in your high school math classes. But as a refresher, or in case you haven’t seen
it before, the idea is that you want to prove some statement for all values of i. You start by proving it for i = 1 (or some other
“base case”). Then you prove that for any i, if you assume it’s true for i − 1 then it must also be true for i. Putting these
together, you can conclude that the statement is true for all i (greater than or equal to 1).

3

Correctness. Let S = t1, t2, . . . , tp be the sequence of (indices of) technologies output by the greedy
algorithm in the order they were selected during the execution. Since the algorithm processes the technologies
in nondecreasing order of l-values, we have lt1 ≤ lt2 ≤ · · · ≤ ltp . For 1 ≤ i ≤ p, define mi = hti and m0 = L.
Since the technologies in S cover the interval [L,H] and the sequence S is listed in nondecreasing order of
l-values, we conclude that for 1 ≤ i ≤ p, the sequence t1, . . . , ti covers the interval [L,mi] and that mp ≥ H.
Furthermore, we have that for 1 ≤ i ≤ p− 1, lti ≤ mi.

We will show that S is an optimal solution. For the sake of contradiction, assume there is a sequence S′ of
technologies such that the technologies in S′ cover [L,H] and |S′| < |S|, where |.| refers to the length of the
sequence. We will prove by contradiction that such an S′ cannot exist. Let S′ = t′1, t

′
2, . . . , t

′
q where q < p.

Without loss of generality, assume that the l-values of the technologies in the sequence S′ are nondecreasing.
For 1 ≤ i ≤ q, define m′i = max(L,max1≤j≤i ht′j

). and m′0 = L. Since the technolognies in S′ cover

the interval [L,H] and the l-values of the sequence S′ are nondecreasing, we conclude that for 1 ≤ i ≤ q,
the sequence t′1, . . . , t

′
i covers the interval [L,m′i] and that m′p ≥ H. Furthermore, we have lt′i ≤ m′i for

1 ≤ i ≤ q − 1
Let i ≥ 1 be the smallest index in which the sequences S and S′ differ. If the first q indices are the same,

we define i to be q + 1. We obtain a contradiction by reverse induction on i.
If i = q + 1, the technologies t1, . . . , tq cover the interval [L,H], which leads to a contradiction since the

greedly algorithm goes on to select another tehchnology tq+1.
Let 1 ≤ i ≤ q. Let S′′ be the sequence of technologies obatined from S′ by exchanging the technology t′i

with ti and deleting any succeeding technologies in S′ whose l-value is lesser or equal to lti . We argue that
S′′ covers [L,H] and that S′′ is ordered according to the l-value. Since the first i− 1 technologies in S and
S′ are the same, we have

• mi−1 = m′i−1,

• lti , lt′i ≤ mi−1, and

• hti ≥ ht′i
.

The last inequality follows from the condition ti is the interval with the largest h-value among all tech-
nologies j such that lj ≤ mi−1. As a consequence, exchanging t′i with ti does not affect the coverage. By a
similar reasoning, any technology t′j for j > i and lt′j ≤ lti ≤ mi can be removed from S′ without affecting

the coverage. Hence, S′′ covers [L,H] since S′ covers [L,H] and S′′ is ordered by nondecreasing l-values.

Time complexity. It takes O(n log n) time for sorting the technologies.
We can compute the best technology among all valid technologies by iterating through the l-values in

sorted order and tracking the the maximum h-value for technologies where the l-value is less than or equal
to the current value of m. Once a technology is selected, we continue from the next technology with l-value
greater than m and update the value of m. It only takes O(n) time to traverse the technologies while keeping
tracking of the desired quantities.

The overall time complexity is O(n log n).

3 Problems

Problem 5: Maximizing the number of tasks
You have the following list of tasks to complete:

• Walk the dog (15 minutes)

• Mow the lawn (60 minutes)

• Shovel the snow (45 minutes)

• Take out the trash (2 minutes)

4

• Clean the pool (45 minutes)

• Wash the windows (75 minutes)

• Wash the car (30 minutes)

• Cook dinner (20 minutes)

You would like to complete as many jobs as you can in a certain amount of time. How would you select the
jobs such that you will accomplish the greatest number of jobs in any amount of time?

Problem 6: Maximizing the profit
You have the following list of tasks to complete:

• Walk the dog (15 minutes, $5)

• Mow the lawn (60 minutes, $50)

• Shovel the snow (45 minutes, $20)

• Take out the trash (2 minutes, $2)

• Clean the pool (45 minutes, $15)

• Wash the windows (75 minutes, $60)

• Wash the car (30 minutes, $15)

• Cook dinner (20 minutes, $5)

If you have 2 hours, what is the maximum profit you can make? How did you select which tasks to complete?

Problem 7: Coupons
Consider the following ”coupon collector” problem. There are different varieties of cereal, and each comes

with a single coupon for a discount on another box of cereal, perhaps of another variety. You can use multiple
coupons when purchasing a new box, up to getting the new box free, but you never get money back. You
want to buy one box of each variety, for as little money as possible. Describe an efficient algorithm, which,
given as input, for each variety, its price , the value of the enclosed coupon, and the brand for which the
coupon gives a discount, computes an optimal order in which to buy the cereal.

Problem 8: Non-Attacking Kings

Place the greatest possible number of kings on an 8x8 chessboard so that no two kings are placed on
adjacent — vertically, horizontally, or diagonally — squares.

Problem 9: Party planning (DPV)
Alice wants to throw a party and is deciding whom to call. She has n people to choose from, and she has

made up a list of which pairs of these people know each other. She wants to pick as many people as possible,
subject to two constraints: at the party, each person should have at least five other people whom they know
and five other people whom they don’t know.

Give an efficient algorithm that takes as input the list of n people and the list of pairs who know each
other and outputs the best choice of party invitees. Give the running time in terms of n.

5

Problem 10: Gas stops (CLRS)
Professor Midas drives an automobile from Newark to Reno along Interstate 80. His car’s gas tank, when

full, holds enough gas to travel n miles, and his map gives the distances between gas stations on his route.
The professor wishes to make as few gas stops as possible along the way. Give an efficient method by which
Professor Midas can determine at which gas stations he should stop, and prove that your strategy yields an
optimal solution.

Problem 11: Bridge Crossing at Night

A group of four people, who have one flashlight, need to cross a rickety bridge at night. A maximum
of two people can cross the bridge at one time, and any party that crosses (either one or two people) must
have the flashlight with them. The flashlight must be walked back and forth; it cannot be thrown. Person
A takes 1 minute to cross the bridge, person B takes 2 minutes, person C takes 5 minutes, and person D
takes 10 minutes. A pair must walk together at the rate of the slower person’s pace. Find the fastest way
they can accomplish this task.

Problem 12: Rumor Spreading

There are n people, each in possession of a different rumor. They want to share the news with each other
by sending electronic messages. What is the minimum number of messages they need to send to guarantee
that every one of them gets all the rumors? Assume that a sender includes all the rumors he or she knows
at the time the message is sent and that a message may only have one addressee.

Problem 13: Chain Cutting

You have a chain of n > 1 paper clips. What is the minimum number of single clips that must be removed
from the chain so that it would be possible to create a chain of any integer length between 1 and n clips,
inclusive, from the resulting pieces?

6

